En las redes sociales las funcionalidades para buscar y recomendar [f]amigos aún son muy limitadas ¿se podría usar algún acercamiento adaptado del retail o el dating para mejorar su eficiencia?
Leo en Los Cuentos del Abuelo los apuntes de Justo Hidalgo sobre la táctica de crowdsourcing de Pandora para hace recomendaciones de música basada en emplear un panel de músicos expertos los cuales evaluan hasta 400 atributos de cada una de las 850.000 canciones del repositorio de Pandora. La idea es que el oído y el cerebro humano son capaces de asignar información a una canción que hoy por hoy un algoritmo es incapaz de determinar.
.
Según Tim Westergren, fundador y director de estrategia de Pandora, el acercamiento de Pandora alivia el interrogante de Napoleon Dynamite. En octubre de 2006 Netflix convocó un concurso para mejorar el algoritmo Cinematch dotado con un premio de un millón de dólares para quien consiguiese mejorar su precisión en más de un 10%. Netflix publicó más de cien millones de ratings (✰…✰✰✰✰✰) de cuatrocientos ochenta mil usuarios anónimos sobre diecisiete mil setecientas películas. En 2007 Len Bertoni del equipo Acmehill había conseguido una mejora del 9,44% determinando que el 15% de la tasa de error de su algoritmo era atribuible a la comedia de culto Napoleon Dynamite que lo mismo recibía una estrella que cinco por usuarios quienes, por lo demás, tenían gustos muy similares.
Finalmente tras examinar 44.014 propuestas de 5.169 contendientes, Netflix otorgó el premio al equipo BellKor’s Pragmatic Chaos de AT&T por muy escasa ventaja sobre The Ensemble ambos con tasas de mejora del 10,1%.
La representación visual de las relaciones halladas por The Ensemble creada por Chris Hefele es especialmente interesante. Muestra las relaciones débiles entre películas como una línea roja y las fuertes como una línea amarilla.
La limitación obvia de todos los algoritmos del concurso Netflix es que, por cuestiones de privacidad, no pueden cruzar los ratings con información sobre el perfil personal de los televidentes. Si se trata de encontrar la relación en Rambo y Commando el problema parece a priori sencillo, pero ¿qué pasa con Torrente 4? ¿será posible predecir si le gustará algo tan típicamente español a un yankee o a un japonés?
Pero incluso disponiendo de un perfil completo, predecir el matching tampoco es tarea fácil. Los algoritmos que tienen en cuenta la personalidad para determinar gustos existen. Uno fácil de probar es el de Be2 basado en el
Estimado Sergio,
Buenos días. Soy Natalia, Responsable de Comunicación de Paperblog en español. Tras haber descubierto tu blog, me pongo en contacto contigo para invitarte a conocer el proyecto Paperblog, http://es.paperblog.com, un nuevo concepto de periodismo ciudadano. Paperblog es una plataforma digital de difusión que, a modo de revista de blogs, da a conocer los mejores artículos de los blogs inscritos.
Nos gustaría que tu blog formase parte del proyecto, ya que tus artículos resultarían muy interesantes para los lectores de nuestra página. Si el concepto te interesa sólo tienes que proponer tu blog para participar. Los artículos estarían acompañados de tu nombre/seudónimo y ficha de perfil, además de varios vínculos hacia el blog original, al principio y al final de cada uno. Los más interesantes podrán ser seleccionados por el equipo para aparecer en Portada y tú podrás ser seleccionado como Autor del día.
Espero que te motive el proyecto que iniciamos con tanta ilusión en enero de 2010. Échale un ojo y no dudes en escribirme para conocer más detalles.
Puedes proponer tu blog desde la pestaña Propón tu blog en la página de Inicio de Paperblog, o en el siguiente link.
Recibe un cordial y afectuoso saludo,
Natalia